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ABSTRACT 
 
In this paper we focus on the problem of colour constancy - how a visual system is able to 

ensure that the colours it perceives remain stable, regardless of the prevailing scene illuminant - in the 
context of the more general computer vision problem. Our aim is firstly to summarise and review the 
most important theoretical advances that have been made in this field. Secondly, we present a 
summary of a comparative analysis of algorithm performance which we use as the basis of a 
discussion of the important questions for future research in this field. Finally, we highlight some areas 
of recent research which we believe are important in the context of improved colour constancy. 

 
1. INTRODUCTION 

 
In the context of computer vision, the problem of colour constancy is best understood by 

considering a simple physical model of image formation in which the “colour” of an object is 
controlled by the interaction of light, surface, and sensor. We assume that a scene is illuminated by a 
single light source with spectral power distribution (SPD) E(λ), which illuminates surfaces 
characterised by their spectral reflectance functions S(λ). The light reflected from a given surface is 
called the colour signal C(λ) = E(λ)S(λ), and it is this light which enters an imaging device to produce 
a colour response qk which is defined as 

 
 qk = E λ( )S λ( )Qk λ( )dλ∫  (1) 

 
In (1), Qk(λ) characterises the spectral response function of a given class of light sensor on the 
imaging plane of the device: it determines the proportion of the colour signal the sensor absorbs on a 
per-wavelength basis. In most imaging devices there are 3 distinct classes of light sensor so that the 
response to light at a given pixel is defined by a triplet of responses q=(q1, q2, q3)t, which are 
commonly referred to as RGB values. An inspection of (1) makes the colour constancy problem 
apparent. The colour response q of a device to a given surface depends on both the reflectance 
properties of the surface, and the SPD of the prevailing scene illuminant. So, when illumination 
changes, so too do the colours recorded in an image. From a computer vision perspective this 
illumination dependence is problematic since ideally, the colours recorded by a device would tell us 
something about the intrinsic properties of the imaged surfaces. That this is not true, implies that 
using colour as a cue to help solve fundamental vision tasks such as scene segmentation, object 
recognition, and tracking might run into problems if the scene illumination is changing. Indeed, there 
is evidence14 to suggest that this is indeed the case. In light of these problems, solving the colour 
constancy problem is of fundamental importance in computer vision.  

 
2. SOLVING FOR COLOUR CONSTANCY  

 
In a theoretical sense, solving the colour constancy problem implies that we must invert Equation (1) 
to recover the scene illuminant SPD E(λ). For a single surface we have only three measurements (the 
elements of q), and both E(λ) and S(λ) are unknown. This implies that the problem is, in a strict sense, 
under-constrained. If we assume that E(λ) is constant throughout an imaged scene, adding more 
surfaces provides us with additional constraints on the illuminant. However, it also introduces further 
unknowns: the reflectance functions of the added surfaces. Thus, we cannot in this way equalise the 
mis-match between knowns and unknowns. Given that the problem is fundamentally under-



AIC Colour 05 - 10th Congress of the International Colour Association 
 

422 

constrained, all progress towards its solution is founded on enforcing one or more additional 
constraints. Computational colour constancy algorithms can be usefully classified as being statistical 
or physics-based approaches. Physics based approaches (e.g. 8,11,16) usually adopt a more general 
model of image formation than Eqn. (1) and seek a solution by exploiting knowledge about the 
physical interaction between light and surfaces. For example, it is known that some surfaces reflect 
light in a mirror-like way and that as a result, these so-called specular reflections have the SPD of the 
illuminant. Identifying such reflections in an image would then determine the scene illuminant. 
Unfortunately, whilst physics-based approaches are theoretically sound, producing a robust algorithm 
based on these principles has proven difficult. 
 
In terms of practical algorithms, statistical based methods have, in general, proven more successful. 
Early statistical approaches (e.g.12) focused on attempting to reduce the discrepancy between the 
number of knowns and unknowns in Eqn (1) by adopting linear model representations of lights and 
surfaces. Such approaches clearly set out the theoretical conditions under which the colour constancy 
problem can be solved. Unfortunately, for the case of a trichromatic device, the required conditions 
are not satisfied in most typical images so that again, this avenue does not lead to practically 
applicable algorithms. Most algorithms which have found practical application render the colour 
constancy problem tractable by adopting (either implicitly or explicitly) a diagonal model of 
illumination change. Here RGB responses qo and qc of a device to the same surface viewed under two 
different lights denoted o and c, are assumed to be related by a diagonal matrix 
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 (2) 

 
In adopting this model two points are important to note. First, it is strictly valid only for a restricted 
class of lights and/or sensors5. However, for most scenes imaged under typical viewing illuminants, 
the model holds to a good approximation. Second, in essence the model assumes that light and surface 
can both be described by 3 parameters however, even in  this case, we have fewer knowns (3m pixel 
values) than unknowns (3m+3) so that further constraints are required to produce a solution. 
 
Given such a model, solving the colour constancy problem amounts to estimating the RGB response 
of a device to a white surface (we call this the white point of the scene light). Two simple algorithms 
which are sometimes used in practice are the max RGB and Grey-World methods. In the first case it is 
assumed that  all images contain a white (neutrally reflecting) surface, which is brighter than all other 
surfaces in the scene, so that the white point of the scene illuminant can be found by locating the 
maximum pixel value in an image. The Grey-world approach is founded on a similar constraint. In 
this case it is assumed that the average of all surface reflectances in a scene is a neutral (grey) 
reflectance, so that an estimate of the scene illuminant can be found by calculating the mean sensor 
response in an image. Both these simple approaches can work well for some images, but their 
statistical assumptions are somewhat naive, and it is easy to imagine examples of real images where 
both methods can (and do) fail badly. More successful algorithms can be designed by adopting better 
founded assumptions about images. A neural network solution3 attempts to learn the relationship 
between observed image RGBs and the scene illuminant by training a network on a large set of 
images for which the scene illuminant is known. The trained network can be seen as representing 
information about the statistical structure of images. In practice it is difficult to train a neural network 
such that it generalises well: i.e. so that it is able to accurately predict the scene illuminant in 
previously unseen images. In addition, the approach is unattractive with regard to the fact that it is 
essentially a black box solution to the problem. 
 
Gamut mapping algorithms1,6,7 are different from other algorithms in the sense that they do not place 
additional constraints on the problem to obtain a solution. Rather, they begin with the observation that 
the problem is inherently under-constrained and set out to solve for the set of all possible solutions. In 
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the context of Eqn. (2) the set of all possible solutions is a set of diagonal matrices, each of which 
corresponds to a plausible scene illuminant. For a given image, an illuminant is said to be plausible if 
its corresponding diagonal matrix D maps all the image RGBs into a pre-determined gamut of RGBs 
called the canonical gamut. The canonical gamut represents the set of all possible RGBs observable 
under some reference illuminant. Gamut mapping solutions differ in their implementation, but central 
to them all is the idea of the canonical gamut which encodes the statistical information about images 
they use. Once a set of valid diagonal matrices has been determined for an image, an estimate of the 
scene illuminant is selected from this set, usually by adopting some heuristic approach1,6,7. 
 
Bayesian approaches2,4 share in common the fact that they attempt to capture information about the 
likelihood of observing a given RGB response under a given light, in the form of a statistical prior. 
Then, given an RGB image whose illuminant is to be classified, they calculate a measure of the 
likelihood that each possible scene illuminant was the illuminant in the given image. Typically, the 
illuminant with the highest likelihood is selected as the estimate of the scene illuminant. The simplest 
implementation of a Bayesian approach to colour constancy is the so-called Color By Correlation4 
method. In this algorithm prior information about plausible scene lights is encoded by restricting 
scene illuminants to one of a discrete finite set of possible lights, each of which is considered to have 
an equal probability of being observed. Prior information about surfaces is encoded by defining a 
distribution of image chromaticities for each of the possible scene lights. This chromaticity 
distribution can either capture information about the gamut of possible surfaces (by declaring that a 
given chromaticity either is or is not observable under a given light), or it can encode a measure 
defining how likely it is that a given chromaticity value will occur under each light. In the first case, 
the algorithm is quite similar to a gamut mapping approach, but with the addition of a restriction on 
the set of possible scene lights. 
 
Of the approaches we have briefly discussed, the Gamut Mapping and Bayesian methods are the most 
attractive from a theoretical perspective. Both methods address the fundamental fact that the problem 
is under-constrained and that therefore the solution is, in general, non-unique. In the ideal case, it 
might be considered that a Bayesian approach should be capable of better performance, since it 
encodes more statistical information than does Gamut Mapping. However, in practice the success of 
both methods depends on how accurately the statistical information they encode is matched to the 
statistics of real images. This point is important and can only be resolved by an evaluation of 
algorithm performance on real images. 
 
3. ALGORITHM EVALUATION 
 
There are two main approaches to algorithm evaluation. Either algorithms are tested on synthetic 
images, rendered according to a model of image formation such as that in Eqn. (1), and using sets of 
measured reflectances and illuminants, or they are tested on real images, captured under controlled 
illumination conditions. Testing on synthetic images means that algorithm performance can be 
evaluated over many thousands of images, and also ensures that the statistical information encoded by 
the various algorithms precisely matches the statistics of the test images. In this sense, synthetic image 
testing gives a best-case measure of algorithm performance. In theory, testing on real images should 
give a more realistic view of an algorithm's typical performance, and it should allow for the 
evaluation of how robust an algorithm is to noise, and perhaps most importantly, to a mis-match 
between an algorithm's training data and the image data it is tested on.  
 
Figure 1 summarises the performance of 5 algorithms in a typical synthetic image experiment. 
Algorithm  performance is plotted as a function of the number of surfaces in an image for Max RGB, 
Grey-World, a Neural Network implementation, an implementation of the Gamut Mapping algorithm 
and Color By Correlation: a Bayesian approach. Algorithm performance is measured in terms of 
angular error, that is, the angle between the actual white point of the scene illuminant pw and 
algorithm's estimate of that white point ˆ p 

w . Performance is measured over many different images and 
a summary statistic (the median angular error) is plotted in Figure 1. This approach to evaluation is 
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typical of the evaluations that appear in the literature (e.g. 1), except for the fact that often, summary 
statistics other than the median are used to compare algorithms.  

 
Table 1 ranks algorithm performance over all 
6000 test images in terms of Root Mean Square 
Error, Median Error, Mean Error, and when 
judged according to a non-parametric Sign 
Test9. For the five algorithms shown there is 
good correlation (with the exception of RMS 
error), but in general, the choice of summary 
statistic can have a strong effect on the 
conclusions about relative algorithm 
performance. A more in-depth discussion can 
be found in10 where it is concluded that the 
nature of the error distributions under study 
implies that the median error is the single best 
summary statistic, and that non-parametric tests 
are most appropriate for determining the 
statistical significance of the results. 
 

In terms of what these results tell us about the performance of different algorithms, the ranking of 
algorithms is largely in line with what we might intuitively expect given what we know about their 
design. Essentially, the results support the theory that incorporating more (and more realistic) 
statistical information about image content leads to better algorithm performance. So, for example, a 
Bayesian approach to colour constancy gives the most accurate performance, with the Neural 
Network and Gamut Mapping approaches also performing reasonably well. As might be expected, all 
algorithms (except for Grey-World) tend towards very good performance as we increase the number 
of surfaces in an image. It is also noticeable that the Bayesian approach significantly out performs all 
other methods for images with few surfaces. 

 

Real image performance of algorithms is 
most usefully evaluated using the set of 
321 real images gathered at Simon Fraser 
University1. Thirty different scenes were 
captured under up to 11 different lights, 
using a well-calibrated digital camera. The 
performance of the same five algorithms 
on this test set is summarised in Table 2. 
For the most part the trend of the real 

image results follows that for the synthetic images: algorithm performance is correlated with the level 
of statistical information incorporated into each method. There are some notable exceptions however. 
First, the Bayesian approach is no longer the best performing algorithm: judged using the Sign Test, 
its performance is equivalent to Gamut Mapping. Second, the Max-RGB algorithm performs better on 
real images than it does in synthetic image tests. We explore the significance of these results and 
discuss what conclusions can be drawn from them in the next section. 

 
4. FUTURE RESEARCH DIRECTIONS 
 

Algorithm evaluations such as the one given above are informative in the sense that they 
enable a comparison of the relative performance of different algorithms to be made. It is clear from 
the evaluation that no algorithm affords perfect colour constancy. However, it is not easy to draw 
conclusions about the whether algorithm performance is “good enough”. One reason for this is the 
fact that a given angular error measure of algorithm accuracy does not easily translate into an 
assessment of whether the corresponding colour constancy performance is good or bad. A bigger 

 RMS Median Mean Sign Test 
Max-RGB 5 4 4 4 
Grey-World 4 5 5 5 
Gamut Map. 3 2 2 2 
Bayesian 1 1 1 1 
Neural Net. 2 3 3 3 

Figure 1 Median Angular Error as a function of 
the number of surfaces per  image. 

Table 1 Ranking of the five algorithms according 
to four different error criteria (synthetic images). 
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problem however, is the fact that 
algorithm evaluation to date is 
weak in the sense that it is based on 
a relatively small set of test images. 
In effect, algorithms are tested on 
at most 30 different scenes (albeit 
under a range of illuminants) and 
moreover, the content of these 
scenes is quite restricted, consisting 
for the most part of scenes containing just a few highly coloured objects. While in some respects this 
represents quite a hard test set, more conclusive evidence as to the relative performance of algorithms 
could be obtained by testing on a much larger set of images. In addition it is important to include 
scenes captured outdoors as well as indoors, and which contain, for example, faces and other natural 
phenomena, since these are the type of images which a real computer vision system will process. 

 
The issue of test scene content is indicative of a more fundamental problem in algorithm 

evaluation: the fact that “good enough” colour constancy performance depends on the context in 
which the algorithm is applied. In computer vision terms, algorithm performance is good enough, so 
long as the illuminant estimate, or equivalently, the illuminant independent description of a surface it 
provides, is of sufficient accuracy to enable subsequent vision tasks such as object recognition or 
tracking, to be performed successfully. Attempts to link algorithm performance to real vision tasks 
have been made. However, such studies are on a very small scale, and it is difficult to draw 
meaningful conclusions from them. Further investigation as to the relation between algorithm 
performance and the accuracy of subsequent visual tasks is therefore necessary, both to properly 
evaluate the performance of existing algorithms, and - by determining the situations in which existing 
algorithms fail – to guide the development of future algorithms. 
 
 The evaluation above does provide some useful information with regard to the performance of 
existing algorithms. In particular it suggests that on average, both the Gamut Mapping and the 
Bayesian algorithms provide good colour constancy (an angular error of 3-4 degrees represents quite 
good accuracy – for example an image with errors of this order would in many cases be acceptable to 
a human observer). The evaluation is ambiguous however, as to whether exploiting gamut 
information, or likelihood information, leads to better performance. The synthetic results support the 
intuitive view that a Bayesian approach is more powerful (since it in effect encodes more 
information). However, the fact that the performance of this algorithm on real images degrades, 
suggests that it is difficult to obtain accurate information about the distributions of image colours in 
real images. Compiling a large test set of images would also be useful in this regard since it would 
enable a more accurate picture of the statistical structure of real images to be obtained. 
 
The evaluation also suggests that algorithm performance is not good enough when estimates are 
derived based on only a few surfaces. This point is important since in practice many scenes will be lit 
by multiple, spatially varying illuminants, so that illuminant independent images can only be obtained 
by estimating the scene illuminant locally, and as a result, on information from just a few surfaces. 
Accepting that the training of existing algorithms is currently imperfect, the results neverthess suggest 
that the current state-of-the-art in algorithm development is not sufficient to enable local processing 
and that further theoretical advances are required. Further information about the scene illuminant 
might be obtained in one or more of several ways. It may be for example, that different algorithms 
perform well or badly on different images, so that by combining the output of two or more algorithms 
(e.g. Gamut Mapping and Bayesian), we obtain a more robust illuminant estimate. There is some 
work in this area15,17 which suggests that this may indeed be the case. For example, it has been found15 
that combining the output of a Bayesian algorithm with the output from an approach based on 
exploiting specular highlights, leads to improved illuminant estimation. An alternative approach might 
be to look for higher-level image cues to help determine the scene content: for example, knowing that 
an image is of an outdoor scene, significantly restricts the set of possible illuminants. 

 RMS Median Mean Sign Test Rank 
Max RGB 8.88 4.05 6.38 3 
Grey-World 14.52 8.94 11.48 5 
Gamut Map. 6.85 3.71 5.00 1 
Bayesian 10.09 3.19 6.56 1 
Neural Net. 11.04 7.78 9.18 4 

Table 2 Errors for the 321 real images. 
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Finally, more robust illuminant estimation might be obtained by making more measurements of the 
light reflected from each scene point. One recent approach in this vein which shows promise is the so-
called Chromagenic Camera16. Here, a conventional RGB imaging paradigm is adopted but two 
images of each scene are captured. The first is just a conventional RGB image, whilst the second is an 
RGB image, optically pre-filtered using a special chromagenic filter. It has been shown that by 
exploiting the relationship between corresponding pixels in the image pair (a relationship which is 
determined by the known filter), it is possible to derive a simple algorithm for estimating the scene 
illuminant. In synthetic experiments similar to those reported above, this algorithm was found to give 
significantly better performance than all other methods, and in particular, its performance on images 
with only a few surfaces is very good. Further algorithm development and testing on real images is 
ongoing, but initial results suggest that this is a rich area for future algorithm development. 
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